PURIFICATION AND PROPERTIES OF THE $\rm H_2$ -OXIDIZING (UPTAKE) HYDROGENASE OF THE $\rm N_2$ -FIXING ANAEROBE CLOSTRIDIUM PASTEURIANUM W5

Jiann-Shin Chen^a and D. K. Blanchard^b

Department of Anaerobic Microbiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

Received May 10, 1984

SUMMARY: Clostridium pasteurianum has two distinct hydrogenases, the bidirectional hydrogenase and the H₂-oxidizing (uptake) hydrogenase. The H₂-oxidizing hydrogenase has been purified (up to 970-fold) to a specific activity of 17,600 μ mol H₂ oxidized/min·mg protein (5 mM methylene blue) or 3.5 μ mol H₂ produced/min·mg protein (1 mM methyl viologen). The uptake hydrogenase has a M_T of 53,000 (one polypeptide chain). Depending upon how protein was measured, the Fe and S= contents (gatom/mol) were 4.7 and 5.2 (by the dye-binding assay) or 7.2 and 8.0 (by the Lowry method). Both reduced and oxidized forms of the enzyme gave electron paramagnetic resonance signals. The activation energy for H₂-production and H₂-oxidation by the uptake hydrogenase was 59.1 and 31.2 kJ/mol, respectively. In the exponential phase of growth, the ratio of uptake hydrogenase/bidirectional hydrogenase in NH₃-grown cells was much lower than that in N₂-fixing cells.

In 1978, we reported the discovery of a second hydrogenase, the H₂-oxidizing (uptake) hydrogenase, in the N₂-fixing anaerobe *Clostridium pasteurianum* W5 (1). The presence of this enzyme has since been confirmed by two other laboratories (2; M. W. W. Adams and L. E. Mortenson, personal communication). *C. pasteurianum* has a bidirectional hydrogenase (ferredoxin:H+ oxidoreductase EC 1.18.3.1) which is involved in H₂ production and it has been extensively studied (3-9). We have purified the uptake H₂ase and compared the properties of the two H₂ases. Based upon their different catalytic and structural properties, we conclude that the two H₂ases are chemically distinct. Although both H₂ases are found in N₂-fixing and NH₃-grown *C. pasteurianum* cells, their relative levels differ under these two growth conditions. The uptake H₂ase perhaps plays a role in regulating the redox state of ferredoxin which is the electron donor for nitrogenase; however the exact role of this enzyme remains to be established.

MATERIALS AND METHODS

All conditions, materials and methods were the same as in reference (1) except for the following:

Growth of organism. For enzyme purification, N_2 -fixing cultures were grown in 40-L batches with the pH maintained at 5.5 with KOH. The cultures were harvested when $A_{550~\mathrm{nm}}$ reached 3-4

^aTo whom correspondence should be sent.

^bPresent address: University of South Florida, College of Medicine, Tampa, FL 33612

Abbreviations: H₂ase, hydrogenase; Fd, ferredoxin; Fld, flavodoxin; MB, methylene blue; MV, methyl viologen; BV, benzyl viologen.

(Spectronic 20); the cells were in late exponential or between exponential and stationary phases. The cells were stored in liquid N_2 in more recent studies, but were first frozen in liquid N_2 and then stored at -20C under H_2 in earlier studies. The activity of both H_2 ases decreased with time at -20C, especially when cells were under aerobic conditions. When studying enzyme levels in N_2 -fixing and NH $_3$ -grown cells, the cultures were grown in medium (8L) containing 5 g/L CaCO $_3$ for pH control. The cultures were sampled when $A_{550~\rm nm}$ was about 1, 2, 3, and 4.

Preparation of crude extract. Frozen cells were thawed at room temperature and under H_2 in Tris-Cl (pH 8.5, 50 mM) containing lysozyme (1mg/mL) and DNase (0.1 mg/mL) for 2 hrs. Enzyme purification started with 0.5 or 1 kg of cell paste which was thawed at 1 g cells per 2 mL of buffer. Crude extract was the supernatant after centrifugation at 35,000 x g for 20 min. All operations were carried out under a H_2 or N_2 atmosphere and were at room temperature unless otherwise specified. All anaerobic buffers contained 1 mM of $Na_2S_20_4$.

Enzyme assays. The H_2 -oxidation assay was carried out with appropriate amounts of hydrogenase so that the rate of H_2 uptake was below 30 μ L/min. One unit is the oxidation or production of 1 μ mol H_2 /min. The H_2 uptake activities reported in (1) were greatly underestimated because too much enzyme was used in the assay. The activation energy was measured in potassium phosphate buffer (pH 8, 50 mM).

Analytical methods. Iron (3) and inorganic sulfide (10) were measured as described. Core extrusion was by the method of Gillum et al. (6). Electron paramagnetic resonance was measured with a Varian E9 spectrometer. Sodium dodecyl sulfate (SDS)-gel electrophoresis was performed according to (11) and (12). Peptide mapping (13) was performed as described (14). Unless specified otherwise, protein was measured by the dye-binding method (15) as described by BioRad Technical Bulletin No. 1051. For the uptake H₂ase, the dye-binding assay gave a protein concentration 55% higher than that given by the Lowry method (16). Thus, a sample with a protein concentration of 5.51 mg/mL (dye-binding assay) became 3.57 mg/mL (Lowry method).

Enzyme purification. Heat treatment of crude extract was described (3). The first DE 52 column step was as in (1); a column of 5 x 15 cm was used for the extract from 0.5 kg of cells. Using this column/extract ratio, the uptake H₂ase was not adsorbed to DE 52 and the effluent containing the uptake H₂ase was designated the early fraction. The bidirectional H₂ase was eluted at about 0.17 M chloride, which was designated the late fraction. The first hydroxyapatite (BioRad HTP) column was 5 x 12 cm, and was eluted by a linear gradient of potassium phosphate (0.01-0.4 M, pH 7.2, total volume 800 ml, also containing 0.1 M KCl). H₂ase was eluted between 90 and 220 ml, and it was concentrated by ultrafiltration with an Amicon PM-10 membrane before being applied to the next column. The Sephadex G-100 column (5 x 56 cm) was eluted as in (1). H₂ase-containing fractions were diluted with an equal volume of 10 mM Tris-Cl (pH 8) and then loaded onto the second DE 52 column. This column (2.5 x 19.5 cm) was eluted by a linear gradient of KCl (0.01-0.2 M, total volume 600 ml) in Tris-Cl (50 mM, pH 8). H₂ase was eluted between 355 and 395 ml. The final HTP column (2.5 x 12 cm) was eluted by a linear gradient of potassium phosphate (0.04-0.15 M, pH 7.2, total volume 400 ml, also containing 0.1 M KCl). H₂ase was eluted between 117 and 142 ml as a yellow-brown band. Between column steps, H₂ase samples were stored at 5-10C. The purified enzyme was stored in liquid N₂ as frozen pellets.

RESULTS AND DISCUSSION

The two H₂ases of *C. pasteurianum* were easily separated by DEAE-cellulose (DE 52) column chromatography. Fig. 1 shows that the H₂-oxidizing and H₂-producing activities of a crude extract were nearly quantitatively recovered after the heat treatment, with the ratio of H₂-oxidation/H₂-production remaining at 54-56. After the first DE 52 column step, the H₂-oxidizing (uptake) activity was roughly evenly distributed between the early and the late fractions, whereas the H₂-producing activity eluted essentially in the late fraction. The late fraction corresponds to the previously characterized bidirectional H₂ase, and its H₂-oxidation/H₂-production activity ratio was 30 at this point (the ratio for purified bidirectional H₂ase is 25). The early fraction had a H₂-oxidation/H₂-production activity ratio of 3,500, and the H₂ase in this fraction is designated the H₂-oxidizing (uptake) H₂ase. Further purified uptake H₂ase had a H₂-oxidation/H₂-production

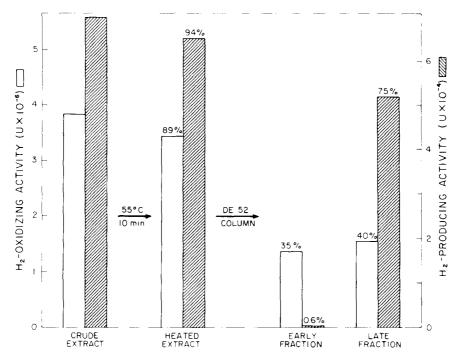


Figure 1. Separation of the H₂-oxidizing H₂ase (the early fraction) and the bidirectional H₂ase (the late fraction) of C. pasteurianum by a DEAE-cellulose (DE 52) column. An extract from 1 kg of cells was used, and conditions were given in Materials and Methods. Percentages denote the recovery of activities by taking the total activity in the crude extract as 100%.

activity ratio of 5,000; the H_2 -producing activity of the uptake H_2 ase is negligible for practical purposes. Using the H_2 -oxidation/ H_2 -production activity ratio of the bidirectional H_2 ase and the H_2 -oxidizing and H_2 -producing activities of a crude extract, we can deduce the amount of the two H_2 ases, in terms of H_2 -uptake activities, in crude extracts. In crude extracts of N_2 -fixing cells (with the H_2 -oxidation/ H_2 -production activity ratio near 55), about 50% of the H_2 -uptake activity was from the uptake H_2 ase.

Table 1 shows the results of one preparation of the uptake H_2 ase from 0.5 kg of cells. The peak fraction had an activity of 22,300 units/mg. Another preparation from 1 kg of cells yielded a final activity of 15,540 units/mg. We also tried to replace the first HTP column step with $(NH_4)_2SO_4$ fractionation $(H_2$ ase was in the supernatant of 60% saturated $(NH_4)_2SO_4$) and an Octyl-Sepharose column step (eluted by a gradient of 60-0% saturated $(NH_4)_2SO_4$ in 50 mM Tris-Cl, pH 8, at 10C). The latter procedure gave a final activity of 15,900 units/mg (peak = 17,600 units/mg) with a yield of 6%. Because the starting activity varied from 17.6 to 25 units/mg, the fold of purification was between 700 and 970. The purity of the enzyme was examined by SDS-gel electrophoresis followed by densitometry. The intensity of the H_2 ase band $(M_r = 53,000)$ was proportional to activity in

Volume (ml)	Total protein (mg)	Spec. Act. (units/ mg protein)	Fold of purification	Total activity (units)	Recovery of Activity (%)
900	27,540	17.6 ^a	1	484,700	100
850	10,900	45.2 ^a	2.6	492,680	102
700	2,933	128	7.3	375,420	77
131	704	443 (peak = 687)	25	311,870	64
180	274	923 (peak = 1,374)	52	252,900	52
40	45	4,716 (peak = 6,294)	268	212,220	44
25	4.05	17,020 (peak = 22,300)	967	68,930	14
	900 850 700 131 180	(ml) protein (mg) 900 27,540 850 10,900 700 2,933 131 704 180 274 40 45	(ml) protein (mg) (units/mg protein) 900 27,540 17.6 ^a 850 10,900 45.2 ^a 700 2,933 128 131 704 443 (peak = 687) 180 274 923 (peak = 1,374) 40 45 4,716 (peak = 6,294) 25 4.05 17,020	(ml) protein (mg) (units/mg protein) of purification 900 27,540 17.6 ^a 1 850 10,900 45.2 ^a 2.6 700 2,933 128 7.3 131 704 443 (peak = 687) 25 (peak = 1,374) 180 274 923 (peak = 1,374) 52 (peak = 6,294) 40 45 4,716 (peak = 6,294) 268 (peak = 6,294)	(ml) protein (mg) (units/mg protein) of of purification activity (units) 900 27,540 17.6 ^a 1 484,700 850 10,900 45.2 ^a 2.6 492,680 700 2,933 128 7.3 375,420 131 704 443 25 311,870 180 274 923 52 252,900 (peak = 1,374) 40 45 4,716 268 212,220 25 4.05 17,020 967 68,930

TABLE 1. Purification of the H₂-Oxidizing (Uptake) Hydrogenase from C. pasteurianum

the sample. For a sample with an activity of 15,900 units/mg, the H₂ase band represented 84.6% of the Coomassie blue-stained material.

Table 2 lists the catalytic and structural properties of the uptake H₂ase and a comparison of the two H₂ases of C. pasteurianum. For the uptake H₂ase, a M_r of 53,000 was obtained with both electrophoretic methods (11, 12), but gel filtration on a Sephacryl S-200 column gave a M_r = 48,500. We used the M_r of 53,000 for calculations. Depending upon the methods of protein determination (see MATERIALS AND METHODS), the activity (units/mg) and the Fe,S= contents (gatom/mol) of a sample can be 15,540, 4.7, and 5.2, respectively (using the dye-binding protein assay), or 23,990, 7.2, and 8.0 (using the Lowry protein assay). We do not yet know which protein assay is more accurate for this enzyme. Core extrusion of a sample (15,540 units/mg) quantitatively yielded FeS clusters of the 4Fe-4S type. The H₂/dithionite-reduced enzyme (15,900 units/mg) had a yellow-brown color and had broad absorption in the 400 nm region, with an ϵ (400 nm) = 12.8 mM⁻¹ cm⁻¹ (dye-binding assay) or 19.8 mM⁻¹ cm⁻¹ (Lowry assay). More concentrated samples (5.5 mg/ml) showed a greenish brown color under N2. Fig. 2 shows the electron paramagnetic resonance spectra of the enzyme. Judging from the intensity of the signals near g=2 in (b) and the ease to generate the oxidized form, we speculate that the minor signal near g=2.0 in (a) was from the oxidized enzyme. Additional redox titrations will be needed to clarify this point and to allow interpretation of these signals.

The significantly higher Ea for H_2 -production by the uptake H_2 as (Table 2) may explain the enzyme's low capacity to produce H_2 . Fig. 3 shows the temperature dependence of H_2 production

^aThe total H₂-uptake activities for these samples were 30.6 and 75.2 units/mg, respectively, whereas the H₂-producing activities were 0.52 and 1.2 units/mg, respectively. The contribution of H₂-uptake activity by the bidirectional H₂ase was subtracted by using a H₂-uptake/H₂-production activity ratio of 25 for the enzyme. There was negligible H₂-producing activity after the fourth step.

TABLE 2. Properties of H2-Oxidizing H2ase and Bidirectional H2ase of C. pasteurianum

	H ₂ -Oxidizing H ₂ ase	Bidirectional H ₂ ase ^a
Molecular Weight	53,000	60,000
Polypeptide	1	1
Iron (gatom/mol)	4.7 ^b or 7.2 ^c	12 ^c
Acid-lable sulfide (gatom/mol)	5.2 ^b or 8.0 ^c	12 ^c
Structure of FeS center	n x (4 Fe-4S)	3 x (4 Fe-4S)
Catalytic activities (µmol H2/min·mg)	
H ₂ -oxidation Spec. Act. (5 mM MB) Km for MB (mM) Km for Fd (μM) Km for H ₂ (atm) H ₂ -production Spec. Act. (1 mM MV) Km for MV (mM) Km for Fd (μM) H ₂ -oxidation/H ₂ -production Activation energy (kJ/mol) H ₂ -oxidation	15,000 ^b 0.42 42.2 0.19 3 ^b 0.36 ND 5,000	13,700 ^c ND ND 0.57 ^d 550 ^c 6.2 51 25
H ₂ -production Electron carriers	59.1 Fd, Fld, MV BV, MB,	22.7 ^d Fd, Fld, MV BV, MB, .
	FAD, FMN, riboflavin.	FAD ^d , FMN ^d , riboflavin ^d .

^aFrom references (3, 6).

by the uptake H₂ase. Fig. 4 shows the effect of pH on activities of the uptake H₂ase. At pH 8, Tris and phosphate buffers gave similar activities, but the bidirectional H₂ase is twice as active in phosphate than in Tris buffer at pH 8 (5). Between pH 8 and 9, there was an abrupt increase in H₂-producing activity by the uptake H₂ase; however, the intracellular pH is not likely to be in this range (17). The effects of temperature and pH may provide a way of probing the mechanism of H₂-formation by this enzyme.

We also compared the primary structure of the two H₂ases of *C. pasteurianum* by the peptide mapping method (13, 14). Fig. 5 shows that the two H₂ases do not share a common polypeptide. Therefore, we conclude that the two H₂ases are chemically distinct.

We studied extensively the levels of the two H_2 ases in N_2 -fixing, NH_3 -grown, $NH_3 \rightleftarrows N_2$ transitional, and energetically perturbed cultures of C. pasteurianum. When we compared the level of the two H_2 ases in cells grown under different conditions and harvested at different stages of growth we observed much variation in the absolute level of the two H_2 ases (e.g., Table 3). However, when exponentially growing cells were compared at similar culture densities ($A_{550~\rm nm} = 1$ -2), the N_2 -

^bProtein determined by the dye-binding assay.

^cProtein determined by the Lowry method.

dThis study.

ND, not determined.

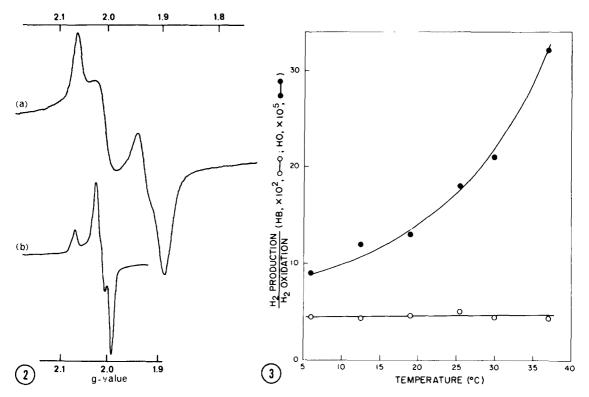


Figure 2. Electron paramagnetic resonance spectra of the uptake H₂ase of C. pasteurianum. (a) The H₂ase sample (2.3 mg/ml, 15,750 units/mg) was as isolated in potassium phosphate buffer (pH 7.2, about 0.1 M; with 0.1 M KCl). EPR conditions were: Microwave frequency, 9.260 GHz; temperature, 13 K; power, 50 mW; modulation, 4 mT; gain, 2x10³. (b) The H₂ase sample (15,540 units/mg) was thawed and diluted with half volume of dist. H₂0 under N₂ to give a protein concentration of 3.67 mg/ml. EPR conditions were: microwave frequency, 9.255 GHz; temperature, 16 K; power, 20 mW; modulation 2.5 mT; gain, 1.6 x 10³. (The signal height in (b) was reduced by 50% during graph preparation to bring the g-values to scale.)

Figure 3. Effect of temperature on the relative rates of H_2 -production and H_2 -oxidation by the uptake H_2 ase (\odot) and the bidirectional H_2 ase (\odot) of *C. pasteurianum*. The assays were performed in 50 mM potassium phosphate buffer, pH 8, using manometry. The volume of gas was corrected for each temperature.

fixing cells always had a lower level of the bidirectional H₂ase and a higher ratio of uptake H₂ase/bidirectional H₂ase than NH₃-grown cells (Table 3). Because the bidirectional H₂ase can lower the level of reduced Fd in the cell whereas the uptake H₂ase may elevate it, the relative level of the two H₂ases may have an effect on the level of reduced Fd or the electron-donating potential of Fd in the cell. Since reduced Fd is the electron donor for nitrogenase (reduced Fd:dinitrogen oxidoreductase EC 1.18.2.1), the bidirectional H₂ase and nitrogenase compete against each other for reduced Fd, and the bidirectional H₂ase may also lower the ratio of reduced Fd/oxidizied Fd to hamper nitrogenase activity. The redox potential required for half-maximal nitrogenase activity has been reported to be between -460 and -470 mV (18-20); Braaksma et al. (22) reported that nitrogenase activity begins to decrease when the potential is above -440 mV. The bidirectional H₂ase of

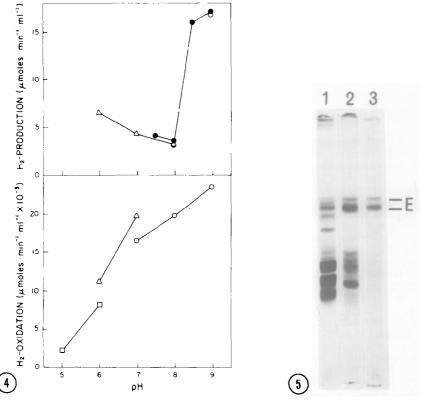


Figure 4. Effect of pH on the activities of the uptake H_2 ase of C. pasteurianum. The assays were carried out in 50 mM of sodium acetate (\square , pH 5-6), potassium phosphate (\triangle , pH 6-8), and Tris-Cl (\bigcirc , \bigcirc , pH 7-9) buffers. Methylene blue (5 mM) and methyl viologen (1 mM) were used as the electron acceptor and donor.

Figure 5. Peptide mapping following limited proteolysis of the uptake H_2 ase (1) and the bidirectional H_2 ase (2) of C. pasteurianum. Gel 3 contained proteinase only, with E marking the bands of the proteinase (S. aureus V8 proteinase). The activities of the samples were: uptake H_2 ase, 15,540 units/mg; bidirectional H_2 ase, 420 units/mg (H_2 -production).

C. pasteurianum can produce H₂ when the potential is more positive than these values (8). We speculate that the uptake H₂ase facilitates N₂-fixation in C. pasteurianum by maintaining a more favorable level of reduced Fd and/or a more favorable ratio of reduced Fd/oxidized Fd for nitrogenase. The speculation remains to be tested.

TABLE 3. Levels of H₂-Oxidizing H₂ase and Bidirectional H₂ase in Crude Extracts of N₂-Fixing and NH₂-Grown Cells of C. pasteurianum.

	Growth	H ₂ ase Level (u		
Growth Phase C	Conditions	H ₂ -oxidizing (HO)	Bídirectional (HB)	НО/НВ
Exponential (A _{550 nm} \cong 2)	N ₂ -fixing	39	35	1.1
	NH ₃ -grown	30	75	0.4
Stationary	N ₂ -fixing	15	14	1.1
(A _{550 nm} ≅4)	NH ₃ -grown	46	36	1.3

^aThe H₂ase level is based upon the H₂-uptake activity of each enzyme. See footnote to Table 1 for methods of calculation.

ACKNOWLEDGEMENTS

This work was supported by grant 5901-0410-8-0193-0 from the USDA Competitive Research Grants Office and the Commonwealth of Virginia. We thank Dr. L. E. Mortenson for performing the core extrusion experiment and Dr. M. W. W. Adams for taking the EPR spectra, both at Purdue University. We also thank S.-L. Catherine Jin for performing peptide analysis and Dr. V. Parekh for assisting with the preparation of the bidirectional hydrogenase.

REFERENCES

- Chen, J. S., and Blanchard, D. K. (1978) Biochem. Biophys. Res. Commun. 84, 1144-1150.
 Schneider, K., Pinkwart, M., and Jochim, K. (1983) Biochem. J. 213, 391-398.
 Chen, J. S., and Mortenson, L. E. (1974) Biochim. Biophys Acta 371, 283-298.

- 4. Chen, J. S., Mortenson, L. E., and Palmer, G. (1976) in Iron and Copper Proteins, Yasunobu, K. T., Mower, H. F., and Hayaishi, O., Eds., pp. 68-82, Plenum Press, New York.
- 5. Mortenson, L. E., and Chen, J. S. (1976) in Microbial Production and Utilization of Gases (H₂, CH₄, CO), Schlegel, H. G., Gottschalk, G., and Pfennig, N., Eds., pp. 97-108, E. Goltze KG, Gottingen.
- 6. Gillum, W. O., Mortenson, L. E., Chen, J. S., and Holm, R. H. (1977) J. Am. Chem. Soc. 99, 584-595.
- 7. Erbes, D. L., and Burris, R. H. (1978) Biochim. Biophys. Acta 525, 45-54.
- 8. Chen, J. S. (1978) in Hydrogenases: Their Catalytic Activity, Structure and Function, Schlegel, H. G., and Schneider, K., Eds., pp. 57-80, E. Goltze KG, Gottingen.
- 9. Adams, M. W. W., Mortenson, L. E., and Chen, J. S. (1980) Biochim. Biophys. Acta 594, 105-176.
- 10. Chen, J. S., and Mortenson, L. E. (1977) Anal. Biochem. 79, 157-165.
- 11. Weber, K., and Osborn, M. (1975) in The Proteins, Neurath, H., and Hill, R. L., Eds., 3rd Edn., Vol. 1, pp. 179-223, Academic Press, New York.
- 12. Laemmli, U. K. (1970) Nature 227, 680-685.
- 13. Cleveland, D. W., Fisher, S. G., Kirschner, M. W., and Laemmli, U. K. (1977) J. Biol. Chem. 252, 1102-1106.
- 14. Jin, S.-L. C., Blanchard, D. K., and Chen, J. S. (1983) Biochim. Biophys. Acta 748, 8-20.
- 15. Bradford, M. M. (1976) Anal. Biochem. 73, 248-254.
- 16. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). J. Biol. Chem. 143. 265-275.
- 17. Riebeling, V., Thauer, R. K., and Jungermann, K. (1975) Eur. J. Biochem. 55, 445-453.
- 18. Evans, M. C. W., and Albrecht, S. L. (1974) Biochem. Biophys. Res. Commun. 61, 1187-1192.
- 19. Hallenbeck, P. C. (1983) Arch. Biochem. Biophys. 220, 657-660.
- Lough, S., Burns, A., and Watt, G. D. (1983) Biochemistry 22, 4062-4066.
 Braaksma, A., Haaker, H., Grande, H. J., and Veeger, C. (1982) Eur. J. Biochem. 121, 483-491.